
ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 1

FemML for Data Exchange between FEA Codes

CMS Group*

*Composite Materials and Structures Group, Code 6304
J. Michopoulos, P. Mast, T. Chwastyk, L. Gause, R. Badaliance,

U.S. Naval Research Laboratory
Washington DC, 20375

johnM@cms.nrl.navy.mil

Abstract
The finite element modeling Markup Language (femML) effort is addressing the problems of data

interpretation and application interoperability in the Fninite Element Modeling domain. This is achieved
through the development of an extensible markup language (XML) for finite element model data that will
permit the storage, transmission, and processing of finite element modeling data distributed via the World
Wide Web and related infrastructure technologies. The focus of this work was to utilize the XML's power
of semantic encapsulation along with the existing and continuously improving associated technology to
develop a dialect for exchanging FEM data across various codes with heterogeneous input format
syntactic specifications. The main aspects of a finite element definition have been used as archetypes for
defining the XML element taxonomy definitions. Namely, the geometry, the material, and the loading
aspects of a structural component specification are used to define the first level elements of the associated
Document Type Definition (DTD). The element list has been amended with a behavior element
specification that represents the solution data to be exchanged or visualized. Utilization of the MatML
standard for material property data exchange is demonstrated. Various tools have been developed to
demonstrate associated concepts along with the ANSYS set of tools.

1. Introduction

1.1 General problems
The main problems associated with all computationally assisted data exchange, interchange and

integration activities can be approached from multiple points of view depending on the needs at hand.
However, there is a global point of view that is common to all industries in need of data exchange. In the
engineering industries it unfolds as a need for integration of FEM models encoded in multiple data
formats from multiple data sources, with current end-user applications and future data exchange systems
between applications. However, data interpretation (semantics) varies from data source to data source
and therefore introduces semantic correctness uncertainty that destroys robustness of interoperability
between applications and data receptacles in general.

The CMS group at the NRL experienced this issue from a very close distance when the time came to
implement the Data Driven Design Workbench (D3W) used as a virtual wind tunnel environment for
design of composite structures and qualification and certification of composite materials systems [1].

 Figure 1 shows the block diagram of D3W's main components and their relationship in terms of
data flow paths. This diagram is intended to represent its abstract architecture in order to expose the
major pathways (non-blue lines) of structured data with FEM characteristics.

mailto:johnM@cms.nrl.navy.mil

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 2

Figure 1. Architecture of Data Driven Design Workbench

OPERATOR

DED Evaluator

Material
Data-Ba se

Dissipated Energy Density

DED Coefficients Base
Case

Solutions

Automated Experimantation
& Characterization Process

Load Space
Cont roller

Material Space
Controller

Geometry Space
Controller

Fluid-Structural
Analysis

Solution Interpolator
for Field Composition

This architecture has evolved through time and the whole environment along with the Dissipated

Energy Density (DED) methodology have been utilized in various applications including health
prediction and sensor optimization of smart structures [2-4].

All the non-blue lines in this block diagram signify data flow that invites the implementation of some
highly structured data format for satisfying the data transfer requirements. One of the most dominant
issues on the development of this environment was clearly the semantic biasing and preference from each
one of the modules as well as the lack of a common representation for the exchanged data. It is exactly
for cases like this that eXtensible Markup Language (XML) has been used to develop the finite element
Modeling Language (femML).

In addition to this general need, the proliferation of the specific needs of particular domains of
application generate a science push for solving the data structure and meaning heterogeneity problems
within the pertinent vertical industry context. More specifically, digital content with the WWW as a
transport medium is available in many forms i.e. multiple commercial applications, manufacturers data-
sheets, materials databases, research and development electronic publications, neutral and custom file
formats etc. The need for collaborative dynamic computing through the WWW, strengthens the push for
solving the heterogeneity problem by imposing a demand for distributed applications, for problem
solving environments, for virtual design and prototyping and for agent-based applications. On the other
hand, the multi-industry support and proliferation of XMLware, the Java-Database-XML integration
technology, and the XML middleware plethora create a technological pull for the utilization of XML-
based solutions.

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 3

1.2 Recognition of the problem by the industry
The data exchange, interchange and integration problems have been recognized very early by

multiple industries of human activity that entails data transfer.
Industrial automation technology has improved dramatically over the past decades. CAx systems

("Computer-Aided anything", or: CAD, CAM, CAE, CIM, etc.) have provided engineering applications
with high-performance solutions. Integration of these technologies is a major issue for industrial
competitiveness. From numerical control (NC) in the fifties, through the first design graphics applications
and computer controlled production operations in the sixties, Computer Numerical Control (CNC) and
Distributed Numerical Control (DNC) in the seventies, and Flexible Manufacturing Systems (FMS) and
solid model-based design workstations in the eighties, automation technology has continued to advance
and become more sophisticated in order to meet the individual needs of industry. In terms of horizontal
integration the CAD industry has responded to geometry data integration and exchange with multiple
specific file format specifications. Examples are ACIS, Parasolid, IGES (flavored & standard), STEP,
STL, VDAFS, CATIA, CADDS5 etc. [5]

However, as industry moves into the 21st century, a new industrial need is becoming the critical
problem to solve: the vertical integration of these diverse automation systems (e.g., CAD, CAM, CIM,
CAE) [6].

The complex nature of engineering data may hinder the integration of engineering applications. The
major “stumbling blocks" that prevent the effective integration of CAx systems are [7]:

1. Current CAx systems have been designed to input and output data rather than information; and
2. Current CAx tools operate on different levels of abstraction of the mechanical product.
Therefore, information (data with meaning) modeling is a major issue for CAx systems integration.

Moreover, data has to be transferred between applications.
An obvious recognition of the importance of XML for information exchange in general, can be

evidenced by the plethora of special XML variants developed by and for many non CAx industries.

1.3 Attempts to solve the CAx data exchange problem

1.3.1 Non XML Efforts
The ever present need for data translation to fit the receiving system's data model has been identified

as the dominant problem of application integration. To deal with this problem, the International
Standards Organization (ISO) launched the STandard for the Exchange of Product model data - STEP
(ISO 10303-1 1994) [8], aimed at the representation of all information about a product throughout its
entire life cycle.

STEP allows different applications to exchange information using a standard format. All data models
in STEP are normalized (i.e., in conformity with the normal forms, described in section 2.1.2) and written
in EXPRESS (ISO 10303-11 1994) [9], an "object-flavored information model specification language"
[10] allowing for the specification of complex data models with multiple inheritance.

Relative to finite element modeling efforts, the data exchange problem has been traditionally cast
under the framework of the product data exchange (PDE) category for most of the historical efforts. Early
data exchange specifications focused primarily on geometrical data. Among these were proprietary
specifications like Autodesk's DXF, and national standards such as IGES (United States), SET (France),
and VDA/FS (Germany). The most significant of these efforts in terms of FEM data representation, is the
AP209 ISO/DIS 10303-209 or the STEP 209 Composite and Metallic Structural Analysis and Related
Design standard[11]. STEP is a complex standard with huge-sized documents, and was developed as if it
was a database itself, adopting the ANSI/SPARC architecture for database systems [12]. Its' most

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 4

significant characteristic is that it allows transfer of conceptual information content in addition to raw
data. The standard is comprehensive and is made out of a very extensive but well structured document
series [8]. Perhaps its massive specifications and custom and proprietary related tool availability are its
two greatest disadvantages.

1.3.2 XML Efforts
With the advent of XML and especially since its being adopted as a standard specification by the

World Wide Web Consortium (W3C) on 1998 [13], many applications became available very quickly.
However, only recently we have seen a utilization of XML technology for the engineering applications
industries.

It's indicative of the trend that proprietary products to translate STEP documents to an XML form
have already been developed to facilitate STEP document transfer. Some companies have decided to
integrate XML technology with their existing product lines.

Router Solutions Inc. has recently announced [14] their custom CAx integration solution strategy.
eXT, is an XML-based 3D MCAD interoperability standard recently introduced by UGS. In short,

UGS is wrapping XML around its Parasolid XT format [15,16].
Autodesk Inc.[17] has also recently announced the new XML/Data Extension tool for its AutoCAD

2000i family of products. The XML/Data Extension is part of a broader Autodesk XML initiative to
create a common, open standard for delivering design data to the Web, ensuring compatibility between
products in different segments of the design industry, and facilitating e-commerce around design
specifications. In addition, because of the cross-platform, cross-industry acceptance of XML, the
XML/Data Extension will allow developers to create tools that help designers share their design data with
other mainstream business functions such as marketing, sales, operations, and customer support.

The aecXML Project was initiated in August 1999 by Bentley Systems, Incorporated with the desire
that it be a unifying force for progress in the development of a project communications framework for
architecture/engineering/construction (A/E/C). Bentley has developed an initial specification for
aecXML, a framework of XML-based schemas to facilitate communications related to designing,
specifying, estimating, sourcing, installing and maintaining construction products and materials over the
Internet. Building on the success of aecXML, Bentley and Bluestone have entered a three-year
agreement to develop engineering software solutions based on Bluestone's Sapphire/Web Application
Server, Bluestone XML Suite™ Integration Server, and Bluestone's comprehensive standards-based, e-
business solution [18].

In addition to this proprietary efforts there are three public domain efforts very relevant to the
engineering data exchange endeavor. These are the Extensible Scientific Interchange Language (XSIL),
X3D (the successor of VRML) that was just released the summer of 2001 and the MatML work in
progress for material properties exchange applications.

The Extensible Scientific Interchange Language (XSIL) is a flexible, hierarchical, extensible,
transport language for scientific data objects. It has been developed at Caltech by Roy Williams [19]. The
entire object may be represented in the file, or there may be metadata in the XSIL file, with a powerful,
fault-tolerant linking mechanism to external data. The language is based on XML, and is designed not
only for parsing and processing by machines, but also for presentation to humans through web browsers
and web-database technology. It comes with a Java object model that is designed to be extensible, so that
scientific data and metadata represented in XML is available to a Java code. There is also a powerful
Swing-based object browser called Xlook that is also designed to be extensible.

The X3D file format was created to substitute VRML for web based 3D geometries by the WEB3D
consortium [20] is basically an XML version of VRML [21] in order to enhance functionality, portability

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 5

and leverage the Java-XML resources that have been created to support the e-business industry. It can be
thought as an XML-interoperable scene graph architecture and encoding standard.

Both of these public formats are very useful to the present effort because they represent an extended
body of work capable of dealing with the geometry encapsulation, representation and visualization of
FEM geometries.

The MatML effort [22] is being coordinated by the National Institute of Standards and Technology,
and is driven by the MatML Working Group, whose members include several ASM International
Fellows, and members from various cross industry organizations. The main goal of this effort is the
development of the MatML DTD, and associated examples and applications, that will facilitate the
transfer, exchange and integration of material properties data related to the needs of most CAx
industries.

1.4 Opportunities of Technology from the EDI and XML solutions from e-Business industry.

1.4.1 Electronic Data Interchange
In parallel to the engineering data interchange and integration efforts the business industry has had an

opportunity to address the data exchange problem through various Electronic Data Interchange (EDI)
initiatives and standards. According to the business industry’s perspective, the Data Interchange
Standards Association (DISA), the not-for-profit group that oversees the development of EDI standards
in the United States, defines EDI as [23] “the computer-to-computer exchange of business data in
standard formats. In EDI, information is organized according to a specified format set by both parties,
allowing a "hands off" computer transaction that requires no human intervention or rekeying on either
end. The information contained in an EDI transaction set is, for the most part, the same as on a
conventionally printed document.”

Currently there are two main EDI standards that re consistent to this definition of EDI [23]. While
North America may have its X12 standard [24], the rest of the world uses the UN/EDIFACT standard[25]
for EDI. UN/EDIFACT resembles X12 in many ways but still has many differences that require
companies doing business internationally to carry at least two sets of electronic formats for each
transaction. X12 has implemented some of the features of the UN/EDIFACT system, but they are still
different standards.

However, there some serious impediments associated with these standards:
• Each industry defines its implementation guidelines for the X12 standard differently. In many

respects, one cannot avoid this situation since each industry has its own set of business rules and
practices.

• In addition to different EDI standards around the world and in different industries, the X12
standards change every year.

• Also, using EDI day-to-day gets pricey. Translator software that takes data from legacy systems
and formats them in the X12 syntax and back again, needs to change with the growing and ever changing
X12 standard. Therefore it often has a high initial price tag and maintenance costs. Enterprise
management software (e.g., SAP, Peoplesoft) often has EDI modules that make implementation a little
easier, but they still need to keep up with changes in the EDI standards.

1.4.2 XML solutions for EDI
XML, with its ability to transfer structured data along with meaning over the Web, immediately

attracted the attention of people and organizations struggling with these issues of traditional EDI.

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 6

XML appears to solve the problem of differing North American vs. international standards found in
EDI. The ubiquity of the Web and relative ease of connections worldwide has made development of
XML and its various applications international exercises. The XML/EDI Group and CommerceNet, two
of the standards groups working on XML/EDI guidelines, have active European and Asian chapters as
well as North American participation. IBM, Microsoft, iPlanet (the Sun/Netscape alliance), and most
other leading vendors are truly international companies with a stake in preventing national or regional
conflicts in standards.

XML also appears to better handle the problem of integrating data from EDI transactions into
corporate systems. EDI transactions move door-to-door, that is from the sender’s mailbox to the
receiver’s. When a transaction arrives, EDI translator software strips away the X12 syntax and presents a
flat file that the receiver’s systems need to parse, check for accuracy, edit, and distribute. Enterprise
management software will often include these functions with the package, but most of these packages are
priced well beyond the resources of small and medium-sized companies. For smaller organizations, they
either need to write custom handlers or print-and-rekey, two less desirable options.

Using XML, enterprises have more options for the display and processing of incoming data. The
Extensible Stylesheet Language (XSL) allows for the visual display of incoming data and formatting of
those same data for further processing by corporate systems. In addition, more end-user applications
packages already or plan to support XML that enables the recipients to capture and process the incoming
data directly. Even with legacy systems, industry groups can specify standard scripting language or Java
code that reflects industry rules, to provide for greater mapping and integration of data exchanged over
the Web with XML.

Many efforts have been initiated to exploit the experience of the EDI lessons with the flexibility of
XML. As an example, the XEDI.org site contains information about a simple and complete approach for
representing X12 and EDIFACT EDI semantics in XML syntax named XEDI. All of the EDI semantics
for transaction sets, segments and elements are stored in a data dictionary that is a collection of XML
documents. Users that are familiar with XML can modify and customize the data dictionary to meet their
company or industry specific trading requirements.

The EDI related efforts and successes of XML contain many useful lessons for the CAx industries.

2. XML Overview

2.1 XML definition
There are multiple definitions of XML that are based on various perspectives of interest:

• Formally, XML is a World Wide Web Consortium (W3C) standard approved as
“Recommendation” in February 1998 [13].

• Functionally, XML is an Extensible Markup Language or a meta-language for developing an
unlimited number of special-purpose data languages.

• From an application development point of view, XML is a family of technologies and tools
that facilitate data exchange and sharing between applications.

• From an evolutional point of view XML is a simplified form or a subset of Standard
Generalized Markup Language (SGML).

• From communication point of view XML is a standard framework for making agreements
about communication.

Many people think of XML as HTML on steroids, or “monastic” SGML. However, XML is not an
improved HTML but rather a true subset of SGML. It supports all the structural and validation features
that are expected from SGML. Valid XML documents are valid SGML documents.

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 7

This evolutionary definition of XML arms it with powerful inherited properties. As a subset of the
SGML defined in ISO standard 8879:1986 [26], XML is designed to make it easy to interchange
structured documents over the Internet or any Local Area Network (LAN). XML files always clearly
mark where the start and end of each of the logical parts (called elements) of an interchanged document
occurs. XML restricts the use of SGML constructs to ensure that fallback options are available when
access to certain components of the document is not currently possible over the Internet. It also defines
how Internet Uniform Resource Locators can be used to identify component parts of XML data streams.
The standard SGML reference is almost 500 pages long, plus about another 100 pages of annexes. The
current XML specification is 26 pages, not counting the list of contributors. This fact puts in perspective
the significant reduction savings in the XML standards.

By defining the role of each element of text in a formal model, known as a Document Type Definition
(DTD), users of XML can check that each component of document occurs in a valid place within the
interchanged data stream. An XML DTD allows computational validation check, against users’
accidental entering of a third-level heading without first having entered a second-level heading,
something that cannot be checked using the HyperText Markup Language (HTML) previously used to
code documents that form part of the World Wide Web (WWW) of documents accessible through the
Internet.

However, unlike SGML, XML does not require the presence of a DTD [27]. If no DTD is available,
either because all or part of it is not accessible over the Internet or because the user failed to create it, an
XML system can assign a default definition for undeclared components of the markup.

From the utilitarian point of view XML allows users to:
• bring multiple files together to form compound documents
• identify where non text entities (images etc.) are to be incorporated into text files, and the

format used to encode each non text entity
• provide processing control information to supporting programs, such as document validators

and browsers
• add editorial comments to a file.

It is important to note, however, that XML is not:
• a predefined set of tags, of the type defined for HTML, that can be used to markup documents
• a standardized template for producing particular types of documents.

XML was not designed to be a standardized way of coding text: in fact it is impossible to devise a
single coding scheme that would be suit all languages and all applications. Instead XML is formal
language that can be used to pass information about the component parts of a document to another
computer system. XML is flexible enough to be able to describe any logical text structure, whether it be a
form, memo, letter, report, book, encyclopedia, dictionary or database.

2.2 The components of XML family of technologies
As it has already been pointed out XML can be considered as a family of technologies contributing

towards alleviating the problems associated with data and document exchange and sharing between
software applications. Some of these technologies that are related to our efforts are described below.

XML 1.0, is the specification that defines what "tags" and "attributes" are, but around XML 1.0, there
is a growing set of optional modules that provide sets of tags & attributes, or guidelines for specific tasks.

In this context XML itself is based on the concept of documents composed of a series of entities.
(`Entity' is the English spelling of the French word `entité', the Teutonic equivalent of which is `thing'.
Those familiar with modern programming techniques will be probably be more comfortable using the
word `object'. All these terms are synonymous.) Each entity can contain one or more logical elements.

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 8

Each of these elements can have certain attributes (properties) that describe the way in which it is to be
processed. XML provides a formal syntax for describing the relationships between the entities, elements
and attributes that make up an XML document, which can be used to tell the computer how it can
recognize the component parts of each document.

XML differs from other markup languages in that it does not simply indicate where a change of
appearance occurs, or where a new element starts. XML sets out to clearly identify the boundaries of
every part of a document, whether it is a new chapter, a piece of boilerplate text, or a block of numerical
data associated with coordinated definitions of a node set in a FEM representation.

To allow the computer to check the structure of a document, users must provide it with a document
type definition (DTD) that declares each of the permitted entities, elements and attributes, and the
relationships between them.

Xlink (still in development as of November 1999), which describes a standard way to add hyperlinks
to an XML file. XPointer & XFragments (also still being developed) are syntaxes for pointing to parts of
an XML document. (An XPointer is a bit like a URL, but instead of pointing to documents on the Web, it
points to pieces of data inside an XML file.)

CSS, the style sheet language, is applicable to XML as it is to HTML.
XSL (autumn 1999) that is the advanced language for expressing style sheets and It consists of three

parts:
• XSL Transformations (XSLT): a language for transforming an XML document to another XML

document or other format documents such as HTML or text.
• The XML Path Language (XPath): an expression language used by XSLT to access or refer to

parts of an XML document. XPath is also used by the XML Linking specification.
• XSL Formatting Objects (XSL-FO): An XML vocabulary for specifying formatting semantics
DOM is a standard set of function calls for manipulating XML (and HTML) files from a

programming language and is considered an interface to programming lanuages.
XML Namespaces is a specification that describes how you can associate a URL with every single

tag and attribute in an XML document. What that URL is used for is up to the application that reads the
URL, though. (RDF, W3C's standard for metadata, uses it to link every piece of metadata to a file
defining the type of that data.) XML Schemas 1 and 2 help developers to precisely define their own XML-
based formats. There are several more modules and tools available or under development and they can be
found in the W3C web site [28].

2.3 How is XML used?
To use a set of markup tags that has been defined by a single user, a trade association, a standards

organization or similar body, users need to know how the markup tags are delimited from normal text
and in which order the various elements should be used in. Systems that understand XML can provide
users with lists of the elements that are valid at each point in the document, and will automatically add
the required delimiters to the name to produce a markup tag. Where the data capture system does not
understand XML, users can enter the XML tags manually for later validation. Elements and their
attributes are entered between matched pairs of angle brackets (<...>) while entity references start with an
ampersand and end with a semicolon (&...;).

Because XML tag sets are based on the logical structure of the document they are somewhat easier to
understand, and remember, than physically based markup schemes of the type typically provided by word
processors. An XML memo might be coded as:
<Invitation>

<to>All members of ASME</to>
<from>CMS group NRL Washington DC</from>

http://www.w3.org/TR/xmlschema-2/

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 9

<date>11th September 2001</date>
<subject>development of femML</subject>
<text>Please contribute towards solving the FEM data exchange problem.</text>

</Invitation >

This file form is ideal for a computational processing. The start and end of each logical element of the
file has been clearly identified by entry of a start-tag (e.g. <to>) and an end-tag (e.g. </to>).

Notice that at this point nothing has been said about the format of the final document. From the
neutral format provided by XML users can chose to display the memo on a screen whose size can be
varied to suit user preferences, to print the text onto a pre-printed form, or to generate a completely new
form, positioning each element of the document where is desired.

2.4 Key idea behind XML
Since XML has been developed as an outgrowth of the Internet and WWW evolution of media for

presenting static content on browser windows, many people think of it as a technology that allows
flexible presentation and reformatting of text documents. Indeed, the SGML heritage of XML clearly
contains the publication industry perception. In other words the context of document transformation is
that of typesetting and typography industries. According to this context information is contained in
documents and reference to their structures means typographical appearance. Later it was extended
horizontally for the context of content presentation devices of varying text presentation capabilities like
mobile phones and personal digital assistants (PDAs). In fact it is this very idea that has pushed the
technology explosion that surrounds it.

However, the key idea behind the power of XML is not related to XML itself but rather to its
“markup” property. It is the markup part of each element that carries the meaning and therefore the
particular context within which a syntactic construct like a particular string or word can be interpreted.
For example the string “apple” can be thought of as typographical entity like a word typeset in bold as it
would be expected from an HTML or a text document XML source. Its form would appear like this:

<document> ….. apple….</document>
On the other hand it could also appear as fruit, or as teacher’s present, or as a computer in a room, or

as computer company, or as material system, or even as a load-bearing mechanical structure. Examples of
the possible XML document appearance of the appropriate element that capturing the specific meaning
for each one of these cases for the “apple” can be seen in table 1 where the labels of the columns signify
the context and the cells below them contain the appropriate XML fragment.

Cooking Educational

Psychology
Office Assets Technology

Industry
Materials
Science

Engineering

<docRecipe>
…
 <fruit>
 apple
 </fruit>
…..
</docRecipe>

<docFactors>
…
 <teacherPresent>
 apple
 </teacherPresent >
…..
</docFactors>

<docInventory>
…
 <computer>
 apple
 </computer>
…..
</docInventory >

<docManuf>
…
 <company>
 apple
 </company>
…..
</ docManuf >

<docMaterials>
…
 <material>
 apple
 </material>
…..
</docMaterials >

<docParts>
…
 <component>
 apple
 </component >
…..
</docParts >

Table 1. XML markup for the word “apple” for various meanings and contexts.

Each one of the columns in this table can be thought as an example document for a custom

application of XML specific to the industry or the context that labels each one of these columns. It is
evident that the last column labeled “Engineering” would be the one closest to a finite element modeling
data representation. This does not mean that XML cannot be used for typesetting and document content

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 10

transformations. In fact HTML 4.0 attempts to correct all the non XMLish problems related to document
validation, and XHTML is a very close application of XML intended to be taking over HTML’s role in
the WWW presentation industry.

From a more formal point of view one can express the idea of XML’s inherent flexibility to carry
meaning along with syntax, by indicating that unlike natural language, XML maintains the non-terminals
of the grammar represented by each XML document as the valid carrier of both syntax (tokens within
tags) and meaning (entity names within angled brackets or tags). The fact that the meaning included in
XML documents is expressed in terms of strings (after all an XML document is a character file) is both a
blessing and a curse. The blessing is that it makes the document amenable to computerized processing
and automation available trough XML tools. The curse is that it still does not solve the recursive meta-
meaning problem of what is the meaning of the strings used to capture meaning and then of those used
for that and so on? However, it is the blessing aspect of this XML central idea that has fed the rampant
proliferation of XMLware and its successful application to various applications of data and document
integration vertically (within a particular industry) and horizontally (across multiple industries).

3. XML and WWW technology Integration for Mission Critical Applications

3.1 The Java Opportunity
It has recently become evident that it is safe to assume our entrance into the era of capitalizing on the

Internet and WWW resources both as a transport environment and as a platform for deploying mission
critical applications related to engineering applications. The applications that are driving the acceptance
of XML are those that cannot be accomplished within the limitations of HTML. Although they all have
been motivated from e-business specifications and goals, they are pertinent to the data exchange industry
in the CAx communities. These applications can be divided into four broad categories:

1. Applications that require the Web client to mediate between two or more heterogeneous databases
that may be stand-alone or be a part of legacy applications.

2. Applications that attempt to distribute a significant proportion of the processing load from the
Web server to the Web client.

3. Applications that require the Web client to present different views of the same data to different
users (this more of a publication presentation item).

4. Applications in which intelligent Web agents attempt to tailor information discovery to the needs
of individual users or/and processes.

The alternative to XML for these applications is proprietary code embedded as "script elements" in
HTML documents and delivered in conjunction with proprietary browser plug-ins or Java applets [29].
XML derives from a philosophy that data belongs to its creators and that content providers are best
served by a data format that does not bind them to particular script languages, authoring tools, and
delivery engines but provides a standardized, vendor-independent, level playing field upon which
different authoring and delivery tools may freely compete.

An overhead view of the characteristics of both XML and Java technologies allows the recognition of
a strong cross-leveraging capability for both of them. In particular, the most significant features that this
recognition is based on the following realizations:

• XML structures can map homomorphically to Java Objects
• XML tags map well to Java Objects allowing late binding and implementation of hierarchical

(OO) data model
• There is Unicode support both in XML and Java that facilitates application localization
• Portability and network friendliness are built-in features of Java

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 11

These realizations can be interpreted as advantages that allow the development of applications with
endless implementation possibilities such as:

• composition/synthesis of complex models just by simple messaging between dynamic object-
ware units automatically produced by XML<->Java toolsets

• light-weight asynchronous processes implementation of distributed, migrating, dynamic and
intelligent agents for each one of the femML tag entities

The inherent correspondence between the XML and Java allows freedom of choice for the starting
and ending points of potential document transformations between them.

The Java to XML path can be described by the following three steps:
• Start with Java class definitions
• Serialize them - write them to an XML stream
• Deserialize them - read values in from previously serialized file
while the XML to Java path can be described by the following three steps:
• Start with XML document type
• Generate Java classes that correspond to elements
• Classes can read in data, and write in compatible format (shareable)

Availability of resources, personal preference and speed of achieving desired goals are the biggest factors
that will determine the direction of transformation for each developer. However, there are some
functional arguments that suggest one over the other approach but their description falls well outside the
scope of the present paper.

3.2 DOM and SAX
Most applications that accept XML documents require the usage of a parser that validates the

submitted XML documents/files against the applicable DTD and by generating an object equivalent
representation of the document for the needs of the application. The way parsers achieve this is by
implementing the Document Object Model (DOM) recommendation by W3C. Although originally DOM
had been implemented to unify the HTML and XML object models of Netscape Navigator 3 and Internet
Explorer 3, it clearly reflects the hierarchical (tree-like as a special case of a graph-like structure) that
underline XML documents. Each XML element corresponds to a DOM node object to the point that the
terms “element” and “node” are being used as interchangeable throughout the WWW and Internet
industries. Clearly DOM is not limited to browser applications nor it is limited to Javascript. DOM is a
multiplatform, Multilanguage interface. There are versions of it for most languages because W3C
adopted the clever strategy of specifying it using Object Management Groups (OMG) [30] Interface
Definition Language (IDL) [31], which allows describing which methods and properties an object has,
and not what the object does. The implementation that is responsible for what the object does can be
encoded in any programming language for which an IDL mapping exists. There are mappings of IDL for
Java, C++, Smalltalk, Ada and even Cobol. However, Java is a particularly privileged language for XML
development. In fact, most XML tools are written in Java and/or have a Java version. As a matter of fact,
there are more Java parsers for XML than parsers written in all other languages combined. Most of these
parsers support the DOM interface.

While DOM is an object-based interface and can be used to communicate with an application by
explicitly creating a tree of objects in memory that closely match the XML document structure, it may
not be very appealing for legacy applications that are “unaware” of the XML industry and are less object-
oriented. For these applications sometimes it is more sensible not to build the DOM tree, but to directly
load the document in their data structure. To respond to this need the members of the XML-DEV mailing
list have developed a standard Application Programming Interface (API) for event-based parsers called

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 12

SAX, short for the Simple API for XML. Event-based interfaces tend to be more efficient, require fewer
resources, and they allow access of the information in the XML document without waiting for the parsing
to finish. For this reasons, Sun has included SAX in ProjectX-an ongoing effort to add an XML parser to
the Java platform. ProjectX also supports DOM so the parser offers both event-based and object-based
interfaces and can be found at java.sun.com. IBM’s and DataChannel’s parsers also both support the
DOM and SAX interfaces.

It is imperative to emphasize that almost every day there new attempts to facilitate the integration of
XML with Java. It is characteristic that a simplified implementation of DOM in Java has already been
created (JDOME) [32], while other modular architectures provide tremendous efficiency in code
development and usage by extending the idea of Java Beans [33]. One of these is the XBEANS effort
[34] that extends the idea of a regular Java Bean to that of a bean that takes XML as input, processes it in
some fashion and then passes XML on to the next Xbean. We are seriously considering utilizing both of
these technologies for implementing a non-legacy code specific implementation of FEM data transfer and
transformation.

3.3 XML and Data Bases
All CAx management applications as well as most FEM codes implement database functionality in

order to facilitate efficient transactions between the user interface and the rest of the functional modules
of the respective applications. This implicit or explicit relevance of databases with the applications of
interest as well as the described morphology of XML raise the reasonable question: "Is XML a
database?"

An XML document is a database only in the strictest sense of the term. That is, it is a collection of
data. In many ways, this makes it no different from any other file -- after all, all files contain data of some
sort. As a "database" format, XML has some advantages. For example, it is self-describing (the markup
describes the data), it is portable (Unicode), and it can describe data in tree or graph structures. It also has
some disadvantages. For example, it is verbose and access to the data is slow due to parsing and text
conversion.

A more useful question to ask is whether XML and its surrounding technologies constitute a
"database" in the looser sense of the term -- that is, a database management system (DBMS). The answer
to this question is, "Sort of." On the plus side, XML provides many of the things found in databases:
storage (XML documents), schemas (DTDs, XML schema languages), query languages (XQuery, XPath,
XQL, XML-QL, QUILT, etc.), programming interfaces (SAX, DOM, JDOM), and so on. On the minus
side, it lacks many of the things found in real databases: efficient storage, indexes, security, transactions
and data integrity, multi-user access, triggers, queries across multiple documents, and so on.

XML documents fall into two broad categories: data-centric and document-centric. Data-centric
documents are those where XML is used as a data transport. They include sales orders, patient records,
and scientific data. Their physical structure -- the order of sibling elements, whether data is stored in
attributes or PCDATA-only elements, whether entities are used -- is often unimportant. A special case of
data-centric documents is dynamic Web pages, such as online catalogs and address lists, which are
constructed from known, regular sets of data. Document-centric documents are those in which XML is
used for its SGML-like capabilities, such as in user's manuals, static Web pages, and marketing
brochures. They are characterized by irregular structure and mixed content and their physical structure is
important.

To store and retrieve the data in data-centric documents, you will need a database that is tuned for
data storage, such as a relational or object-oriented database, and some sort of data transfer software are

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 13

needed. This may be built in to the database or might be third-party middleware. Depending on your
needs, you may need Web publishing abilities as well.

To store and retrieve document-centric documents, a native XML database or content management
system is needed. Both of these are designed to store content fragments, such as procedures, chapters, and
glossary entries, and may include document metadata, such as author names, revision dates, and
document numbers. Content management systems generally have additional functionality, such as
editors, version control, and workflow control. Although content management systems generally use a
native XML database for storage, this is hidden from the user.

The rapidly expanding number of products associated with XML and its association with database
applications are divided into eight categories. It’s important to realize that the boundaries between some
of these categories, especially XML-Enabled Databases, Native XML Databases, XML Servers, and
XML Application Servers, are somewhat arbitrary.

• Middleware: Software you call from your application to transfer data between XML
documents and databases. For data-centric applications.

• XML-Enabled Databases: Databases with extensions for transferring data between XML
documents and themselves. Primarily for data-centric applications.

• Native XML Databases: Databases that store XML in "native" form, generally either as
indexed text or as some variant of the DOM mapped to an underlying data store. For data-
and document-centric applications.

• XML Servers: Platforms that serve data -- in the form of XML documents -- to and from
distributed applications, such as e-commerce and business-to-business applications. Primarily
for data-centric applications.

• XML Application Servers: Web application servers that serve XML -- usually built from
dynamic Web pages -- to browsers. For data- and document-centric applications.

• Content Management Systems: Systems for managing fragments of human-readable
documents and include support for editing, version control, and building new documents from
existing fragments. Primarily for document-centric applications.

• Persistent DOM Implementations: This category has been merged with native XML
databases.

• XML Query Engines: Standalone engines that can query XML documents.
In general, code has to be written to integrate Middleware, XML-Enabled Databases, Native XML
Databases, XML Servers, and Persistent DOM implementations with applications. XML Application
Servers require some scripting, and Content Management Systems need to be configured, which may
be a non-trivial task in itself.

4. Current status of femML

4.1 Historical note
As described earlier, femML has been developed as a necessary outgrowth of our group’s research

efforts, to solve the structured data intensive exchange problem between modules of our custom
applications or even between custom stand alone application such as RCfem [35] and existing legacy
commercial applications such as ANSYS [36] and ABAQUS [37]. The idea for its creation was naturally
generated in the summer of 1999 and has been evolving ever since. FemML’s development went from
the conceptualization to the implementation phase when we searched the XML repositories and found
nothing relevant to this. Special encouragement for the final push was the lack of responses when we
posted inquiries about the possible existence of such an XML variant on October 6, 2000 at various

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 14

mailing lists like the XANSYS one for ANSYS users. The only relevant XML variants were XSIL, X3D
and MatML, all dealing with a partial collection of issues associated with the FEM data exchange, but
none of them was directly dealing with the entirety of the main problem.

4.2 What is femML
The finite element modeling Markup Language, is an XML variant designed to facilitate the data

transfer, exchange, interchange and integration between finite element modeling applications and their
modules. It is work in progress that has accomplished the creation of a DTD, a SCHEMA and certain
FEM code specific file generation and parsing tools. It is in a pre-recommendation stage and our focus is
to offer it for public discussion, development and distribution. This is not to say that femML cannot
eventually evolve to forming the kernel of a set of technologies that will not be solving the data exchange
problem, but it will lead to an alternative way of working with FEM data discretizations. A way that
would use just three component technologies:

• femML as a transport file format,
• an ordinary Relational Data Base Management System (RDBMS) for dynamic data

management,
• and a visualization module.

Such a combination of technologies would allow composition and factoring of FEM discretizations for
the needs model synthesis and combination as well as the needs for model decomposition and
simplification of the design and prototyping industries.

4.3 femML Objectives
Despite the fact that femML began as a custom effort specific to the data exchange needs within the

context of the activities of our group, the objectives employed to motivate the effort of the femML
development were very specific and quite general:
• Define a standard for the exchange of FEM data (including product shape, associated FEM models,

material properties and analysis results) that will allow a person or a computer application to interpret
and use the data regardless of its source or target and regardless of the taxonomic order of the FEA
model. This effort minimally corresponds to defining: i. A set of XML Tags, ii. Relationships and
constraints on these tags, and iii. Document Type Definition (DTD) or/and Schema

• Define and develop a set of examples that follow the standard.
• Define and develop a set of tools for the utilization of this standard from and to other applications.
••

 Develop examples of using these tools.
••

 Develop a long-term framework for utilization of legacy RDBMS systems, 3D visualization viewer
systems, and light-wait asynchronous processes architectures (i.e. agents), for achieving a truly
distributed and transparent capability to utilize FEM techniques in highly functional, economical, and
ubiquitous manner.

By the term “regardless of the taxonomic order” we mean the development of an XML dialect for FEM
data exchange that can accommodate all, or most of the FE varieties, i.e. structured, unstructured,
blocked, hierarchical, spectral, stochastic etc.

4.5 femML Document Type Definition (DTD)
The current state of affairs has been progressed into the development of a DTD that can definitely

cover all of the taxonomic categories of FEM data, except the stochastic ones.

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 15

The strategy followed for developing femML’s vocabulary of terms, relationships and constrains as
well as the DTD that encapsulated them was a special application of the process described by the Unified
Modeling Language (UML) [38] activity diagram given in figure 2.

Define Vocabulary Terms

Define Relationships and Constraints

Analyze Human Factors of Vocabulary

Define EDI Mapping

Assess Representation Requirements

Create Sample Document

Create DTD/Schema

Primary Use

EDI Integration?

Human
authors?[text oriented]

[data oriented]
[no]

[yes]

[no]

[yes]

Figure 2. UML activity diagram representation ofor DTD/SCEMA development process

This process in itself is a special case of the general process for developing an XML variant that
although obvious, has been formally captured in a UML activity diagram in [39]. Clearly the pertinent
path for our case implies engineering electronic data interchange (EEDI), and can only reach its terminal
state if successful EEDI has been achieved. Otherwise it cycles through the feedback path on the left of
the activity diagram that connects the “Define EEDI Mapping” node with “Define Vocabulary Terms”
node.

The EditML [40] application was used to draft the sample document and its built-in capability for
automatic DTD/SCHEMA generation was exploited to generate the initial stamp of the particular femML
DTD and SCHEMA. The currently implemented DTD for femML appears as a UML class diagram
shown in figure 3.

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 16

The femML node can be repeated multiple times within a single document to allow capturing the
FEM data specification of multiple parts or domains.

femMLdoc

-metaTag1..*
header

materialSet nodeSet elementSet
loadCase resultCase

material node element loadSpec resultSpec

1
0..11

1
1

0..1

1
1

1

1

1
1

1
1..*

1
1..*

1
1..*

1

1..*

1

1..*

Figure 3. UML representation of the top two levels of femML DTD structure

The header element is there only to ensure there is a transport mechanism within the document for
the meta-data. These meta-data are implemented through meta-tags that encode information about the
human author, the application generating the entire document, date of creation, project it belongs to and
other non FEM specific data.

The materialSet element is responsible for carrying the material properties information associated
with the FEM representation of the part or component encapsulated in the document at hand. NodeSet is
the element that caries the nodal geometry information of the discretized component, while elementSet
carries the elemental information of the model. These last two elements/nodes are responsible for
carrying the appearance information of the model from a 3D geometrical point view.

The loadCase element is responsible for carrying the loading or/and boundary conditions on a nodal
basis. Finally, the first level of femML nodes is completed by the resultCase node that carries the nodal
results data (i.e. displacements, stresses, strains, energies and any other scalar, vector or tensor
component quantities associated with the nodes).

Each one of these nodes can have many individual children nodes to carry the specific data associated
with each one of them like coordinate elements for each FEM node.

It is anticipated that the XSIL, X3D and MatML efforts will play a pivotal role in the development,
testing and integration of femML. XSIL and X3D can serve as target translation languages for exploiting
their visualization resources for 3D repreentation of FEM models. When MatML is completed but also
even now that is under development, can be integrated through adaptation of the appropriate namespace
to define material properties necessary for femML under the materialSet element by borrowing MatML’s

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 17

capability to describe material properties in place of the existing material node under materialSet. Our
interest in describing material properties for composite materials forms the basis of our current and future
cooperation with the MatML working group.

Station To Station Data Exchange via femML

5.1 General case of S2S implementation
Despite the benefits of extending the expressive power of XML with the dynamic data representation

and manipulation capability of Java enabled applications, we have decided to focus onto the simplest of
the approaches for exchanging FEM model data, by utilizing the Station-to-Station (S2S) approach that is
built entirely on XML technology (see figure 4).

Source
XML or

Non-XML
Document
FEM model

Destination
femML

Document
FEM model

Transform
Functions

XSL

Transform
Map

Transformation
(XSLT or NOT)

Source Spec

(DTD or
Schema)

Target Spec

(DTD or
Schema)

Figure 4. S2S data transformation architecture

This decision does not preclude the future exploitation of the XML-to-Java (or vice versa)
cooperative benefits in terms of dynamics, scalability, deployability and economy.

The S2S model assumes the existence of a source and a destination data-document and it is not
different than the most generic of the business to business (B2B) models that dominated the Internet
during the last few years.

The transformation can be either implemented trough a common XSLT processor or through a Java
application that utilizes the parsed DOM equivalent of the source document structure and subsequently
rewrite it to a new one that can then be converted to the target document.

In either case, the transformation processor requires a transformation definition defined via a set of
transform functions that may or may not implement templates, while at the same time it ensures that both
source and target documents/files are valid according to their corresponding DTDs or Schemas. The
transformation can be implemented in a multidirectional manner. Users with not extensive XML or/and
Java experience can use of the shelve tools to construct the transformation engines as a byproduct of
utilizing intuitive tools with simple graphical user interfaces (GUIs). An example of such an application

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 18

is BizTalk Mapper that belongs to BizTalk [41] set of tools that is a Microsoft led XML initiative. An
aspect of its GUI can be seen in figure 5 where defining the transformation amounts to drawing lines that
signify the correspondences between the elements of the source and target elements.

There are many other applications that allow the automation of document transformation design and
implementation are that can be found either as stand alone applications or as parts of tool suites.
Information about such tools can be found at the XML specific portals like xml.org, xml.com, etc.

5.2 ANSYS case of S2S implementation
When it comes to considering ANSYS as being one of the two applications that have to be used for

exchanging FEM data, there are several factors to be considered regarding the existence of target and
source file formats as well as means for linking to the ANSYS database.

The existence of the very powerful ANSYS Parametric Design Language (APDL) [42], as well as the
ANSYS programmable features that allow linking of custom functionality into the main executable [43]
through Fortran, C, C++ source code, present a very interesting variety of approaches towards parsing
and generating input and output data files. The architecture that has been implemented can be seen in the
figure 6. The doted line components have not been implemented yet. Instead of describing the additional
components of this architecture to justify the ANSYS specialization of our general S2S approach we will
rather describe the followed strategy because it describes the motivation behind the adaptation of this
approach.

Thus the strategy followed by our group, can be described by the following steps:
1. Authored the ANS2AGT macro in APDL. This macro can be executed after one has a working

model database complete with results. It reads the database and it creates an ASCII file that
contains all the FEM pertinent data (geometry information, material definition, loading

Figure 5. Simplicity of BizTalk Mapper GUI.

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 19

ANSYS
Generic
Text file

Destination
femML

Document
FEM model

Transform
Functions

XSL

Transform
Map

Transformation
(XSLT or NOT)

Source Spec

(DTD or
Schema)

Target Spec

(DTD or
Schema)

Figure 6. ANSYS based S2S data transformation architecture.

ANSYS

ANS2AGT

AGT2ANS

ANS2FML

CORBA
enabler

Java
Parser

specification and corresponding results). This file has the extension “.AGT” to signify that it is an
ANSYS Generic Text file. Other ANSYS file formats could be used (ANF, CBD) as well. The
file structure is not important as the particular selection of represented data is. This selection has
been designed such as when the data in this file are read back into ANSYS while the database is
originally empty, the produced database contains complete information of a bottom-up built
model (from nodes and elements), that can be solved and results can be plotted in ANSYS itself.

2. Authored the AGT2ANS macro in APDL. This macro implements the inverse functionality of
ANS2AGT. Namely, it reads an .AGT ANSYS Generic Text file into the ANSYS database. The
main reason for creating this macro was to establish an independent validation path for the
integrity of the data exported by ANS2AGT.

3. Created the ANS2FML macro in APDL. This macro allows exporting the femML file that
contains the data for an existing model in the ANSYS database.

4. Considered the strategy for reading femML files into ANSYS. The obvious solution would be to
write a parser based on a C++ implementation of the DOM. A second strategy would be to use a
Java based parser but since this would require to call Java from C++ that would require to develop

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 20

a Java wrapper of ANSYS by utilizing the Java Native Interface (JNI). A third approach could be
embedding a Java parser that takes the femML DOM information and passes it to the ANSYS
database custom routines available as User Programmable Features (UPFs). This approach would
require a mechanism for calling java bytecode from C++ that can certainly be implemented by
using the JNI as well. A fourth strategy would be to exploit an application like Mathematica that
can both talk to a Java parser of femML and the C++ extensions of ANSYS via the J-Link and
Math-Link interfaces. This would make Mathematica a communications arbitrator between the
parser and ANSYS. A fifth strategy would be to use a Java parser that can communicate with a
custom version of ansys.exe that is enhanced by custom C++ routines for defining database
entities. The communication will occur over the TCP/IP layer and will be implemented through
one of the object oriented communication technologies like OMG’s IDL on CORBA [44]
objects. This last approach is something we are seriously considering pursuing given the time and
programming resources will become available. None of these approaches could be implemented
fast enough to be fully functional by the time the first femML DTD was ready.

5. Finally an indirect approach was used for this purpose. Utilized the S2S approach and initiated
authoring of an XSL stylesheet template that would allow using XSLT processor transformation
to transform the femML to its AGT equivalent. The AGT2ANS module could be used to load the
model into the ANSYS database.

6. An alternative way was to use a proprietary product called XMLjunction [45] that allows
implementing bi-directional transformations between flat files and XML documents.

6. The future of femML

6.1 Issues to be resolved
The distance to be traveled for the development of a comprehensive femML standard is very long.

Experience from other efforts has shown that on one hand no specification can end up becoming a
standard if it does not have the support of industry, government, and academia. On the other hand
experience has also shown that no standard is any good if it is not used by end-users in all of these
sectors.

In addition to the economic and political factors the play a role in developing and adopting standards
there are always technical reasons mostly associated with the derivable utility, that can make or brake a
standard. The technical issues that we can foresee that will play an essential role in fem ML’s adaptation
and usage are the following:

Scale of Generality: Should we be thinking in extending femML to cover finite difference
discretizations with all their idiosyncrasies, boundary element discretizations, hybrid discretization or
even non-discrete models of continuous systems. For that matter should we be thinking of a femML or
discrete model representation Markup Language (dmrML), or even a physical model behavior
representation Markup Language (pmbrML)? It appears that the latter would be the most inclusive and
general case. However, very ambitious goals may provide all kinds of reasons for not realizing these
goals. This is an issue that a decision cannot be taken a priori before considering resources and support.

Separation between Appearance and Behavior: The current DTD implementation follows a strict
FEM data file structural architecture. Information holding the geometry information of the 3D model is
included along with loading, material and results specification. However, there are reasons for altering
this situation. If we consider that there might be cases that the data that need to be exchanged are going to
be based only on a particular subset of the original, then we have consider structuring the file in such a
way that is easier to access and transfer data subsets of particular nature. The geometry model that is

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 21

responsible for the appearance of the model, and the loading, material and results specifications that
capture the behavior part of the model are two subsets of this type. The question at issue is under what
conditions should we restructure the DTD to attach them under separate elements in order to facilitate
transformation? In view of the existence of X3D and XSIL a direct mapping between their elements and
the geometry elements of our DTD could be possible. The disadvantage of overextending such an
approach may lead to a very verbose data file. However, since files like this are not intended to be human
readable (although it actually is) but rather machine-readable. This issue will most likely be resolved
from the need to integrate horizontally with other industries (i.e. entertainment industry) that may require
CAx models.

Utilization/Leveraging of existing XML dialects: Particular element definitions (i.e. material
definition) may already be defined from an already existing XML application (i.e. MatML). The
namespace specification allows borrowing such constructs. The question is when we should be doing it
when we should not. This issue can be resolved careful consideration of the semantic overlap and
proximity between the intension of our application and the extension of the existing dialect’s DTD.

Scene graph Structure for geometry: How much should we be aware and should we implement scene-
graph internal representation architecture, that follows the lessons for other 3D representation
methodologies such as Open Inventor [46], VRML and X3D[20]. What may determine a settlement to
this issue may become a mute point when efficient ways to go in and out from the scene-graph
representation become available while at the same time do not require users to spend time over steep
knowledge curves. However, our group believes in leveraging existing technologies and lessons learned
from their usage to make decisions about our contribution to the evolution of femML.

Composition and factoring isomorphism between data of FEM model and their femML expression: In
the physical space structures can be thought as aggregates of parts and components. What allows us to
synthesize a complex structure out of various parts is called composition of parts. When we decompose
the aggregate structure to its parts we perform the operation of factoring. We can obviously think of both
of these operations at the data representation level where femML documents can be the result of
composing other ones (corresponding to part descriptions), or femML documents corresponding to part
representations can be the result of factoring aggregate structures femML representations. The issue here
is how much should we strive to establish and maintain a DTD/Schema architectures that preserves a on
to one correspondence between the physical and data representation of the abilities to compose and
decompose FEM representations.

Distribution of metadata: Should a document created as the composition of other documents that
correspond to parts, components or substructures, carry the meta-data of the sources? If yes, should they
also be composable or should they exist individually as a part of metadata nodes at lower levels of the
DTD graph?

There are other generic issues that are applicable in the development of any XML variant and
therefore valid for the case of femML as well.

The most typical of these issues is the dilemma of the choice between implementing a DTD and a
Schema based strategy. There are pros and cons for both of them and for the moment we are focusing on
the DTD although we have also created a schema for femML. However, we did not need to use the
schema-based approach yet. The technical details of what can and cannot be done with each one of them
may be of no relevance here. The proliferation of particular tools and their economic impact to the users
and developers combined with the usability and learn ability of associated tools, may turn out to be the
major factor in the future that will determine which one is more practical for particular applications.

Another generic issue is the historical decomposition capability. Should we be able to factor the
component data representations of a femML file based in previous versions of it? Effectively this would

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 22

allow for a version control mechanism that is encoded inside the file. This falls well outside the
particulars of our intentions regarding femML but it may very well be a seed for a useful debate on an old
issue of the application development community brought into the context of the XML document
management community.

6.2 Potential evolution of the femML DTD
To address all of the above-mentioned issues except the first one (scale of generality) we have already

started modifying the femML DTD structure. A potential evolution of the femML DTD may start from
the architecture presented in figure 7, where the top layers of the architecture have been captured as a
UML class diagram.

femMLdoc

-metaTag1..*
Head Component

*

*

ComponentHead*

*
Appearance

Behavior

-

1

-

1

*

* NodeSet

ElementSet

-.

*
-.

*

OpticalMaterialSpec

-.

*

-.*

ConstitutiveMatSpec

BehaviorCase

InputStimulus

OutputResponse

*
*

*

*

matMLdoc

-1

-*

-.

1

-.

*

1 *

-

1

-

*-

1
-

*

Figure 7. UML representation of the top two levels of an alternative femML DTD

Here the issue of compositionality is addressed immediately by the implementation of the
Component node. Effectively this allows the existence of many components with one or many separate
domains in one file. The Head node at the same level is intended to capture the global metadata for this
file with a substructure very similar to the one described before for the current incarnation of femML
DTD. What is drastically different from the current architecture here is the fact that each component node
has always only three children nodes. The ComponentHead node that contains the metadata associated

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 23

with this particular component, and the Appearance and Behavior nodes. Effectively, these last two
nodes manage to separate the geometry representation of the FEM data, from its behavior. This was done
to ensure semantic independence between these two aspects of every discrete model of continuous
structural system via FEM.

As expected the Appearance node has the usual children i.e. NodeSet and ElementSet, but it also has
the OpticalMaterialSpec node. The motivation of this node is based on the need to represent 3D
geometries regardless of results data. It allows visualizing the 3D geometry of a model by assigning
surface texturing, optical properties of the surface (reflectivity, emissivity etc) and in general parameters
mostly known to the 3D rendering industry.

The behavior of a system in the continuous mechanics context depends on two major aspects.
The first aspect relates to the intrinsic material behavior of the structure that is usually captured by the

constitutive equations applicable and the constants associated with them. To capture this aspect of the
component behavior the node ConstitutiveMatSpec has been proposed as a child of the Behavior node.

The second aspect relates to the fact that the observed response of the system at the nodal or
elemental levels depends on the stimulus on the system that is represented by the loading conditions. One
has to have the stimulus-response representation of the system in order to claim an ability to represent
behavior. For this reason BehaviorCase node has been introduced as another child of the Behavior node.
Because the response of the system is specific to its stimulus and because we may have to deal with
multiple cases of stimulus-response pairs this node can be repeated in the file.

To represent the stimulus for each one of the behavior cases we introduced the InputStimulus node
that contains the loading and boundary conditions, and the OutputResponse node that contains the
corresponding results from the FEM analysis. They are both children of the BehaviorCase node.

There is room for a lot o refinement and restructuring of these ideas and we hope that the interaction
from the FEM community will help towards this end.

7. Proposed long term approach and concluding remarks

We feel that the in addition to the efforts on the custom development of femML by our group, a much

more inclusive and robust effort would be to follow the approach similar to that used for developing
MatML. The strategy of this approach has the following activities:

• Form, maintain and expand a working group with members from Academia, Industry,
Government, Professional societies and Standards Organizations

• Identify issues to be resolved and their priority
• Develop and implement strategy for addressing issues
• Develop of the formal MatML document type definition or/and schema
• Development of a catalog of examples
• Application development and acceptance testing
• Utilize Open Source Development Network (OSDN) [47] resources like the “SourceForge” [48]

development and deployment repository for DTD, SCHEMA, Examples, XSLTware, and custom
format translator components

• Iterate
• DisseminationAt the present moment the working group is limited to NRL’s CMS group

representatives and to the International Science and Technology Outreach Society (ISTOS) members
[49]. As soon we publish the results of the femML effort at cms.nrl.navy.mil/femML/ we plan to invite
people from relevant mailing lists to participate and contribute in this effort.

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 24

7. References

[01] J.G. Michopoulos, R. Badaliance, T. Chwastyk, L. Gause, P. Mast, C. Farhat and M. Lessoine,
Coupled Multiphysics Simulation Of Composite Material Softening In A Virtual Wind Tunnel
Environment, Proceedings of Sixth U.S. National Congress on Computational Mechanics, U.S.
Association for Computational Mechanics, Dearborn MI, 1-3 August 2001, pp 521
[02] J.G. Michopoulos, P.W. Mast, R. Badaliance, I. Wolock, Health Monitoring of smart structures by
the use of dissipated energy, ASME proc. 93 WAM on Adaptive structures and material systems, G.P.
Carman/E. Garcia,eds., (ASME, AD-Vol. 35, 1993) 457-462.
[03] P. W. Mast, J.G. Michopoulos, R. Badaliance, H. Chaskelis, Dissipated energy as the means for
health monitoring of smart structures, SPIE Proc. Smart Structures and Materials 1994, Smart Sensing,
Processing, and Instrumentation, J. Sirkis, ed., (SPIE, Vol. 2191, 1994) 199-207.
[04] P. R. Factory, Health error prediction and sensor topology optimization on a smart pressure vessel,
Smart Structures and Materials 1995, Industrial and Commercial Applications of Smart Structures
Technologies, (SPIE, Vol. 2447, 1995), 155-166.
[05] V. M. Kern, Maintaining Semantics In The Integration Of Network Interoperable Product Data
Models, Doctoral thesis submitted as a partial fulfillment of the requirements for a degree of ‘Doutor em
Engenharia de Produção’ at the Universidade Federal de Santa Catarina, Brasil, Florianópolis, December
of 1997.
[06] Y. Yang. “The STEP Integration Information Architecture”. In: Law, K. (ed.): Engineering Data
Management: Key to Success in a Global Market. Proceedings of the 1993 ASME International
Computers in Engineering Conference and Exposition, San Diego-CA, pp. 39-47, 1993.
[07] P. Wilson, Information And/Or Data?, IEEE Computer Graphics & Applications 7, pp.
58-61, 1987.
[08] ISO 10303-1. Product Data Representation and Exchange - Part 1: Overview and Fundamental
Principles. Committee Draft, September 15, 1992.
[09] ISO 10303-11. Product Data Representation and Exchange - Part 11: EXPRESS Language
Reference Manual. Document TC184/SC4/WG5 N65(P2). ISO International Standard, November 1,
1994.
[10] D. Schenck and P. Wilson. Information Modeling: The EXPRESS Way. Oxford
University Press, New York, 388 pp., 1994.
[11] Recommended Practices for AP 209 – ME007.01.00, PDF document, can be accessed at
http://pdesinc.aticorp.org/whatsnew/recprac209v1a.pdf, June 25, 1999.
[12] D. Tsichritzis and A. Klug (eds.) The ANSI/X3/SPARC DBMS Framework Report of
the Study Group on Database Management Systems, Information Systems 3, pp.173-191, 1978.
[13] T. Bray, Introduction to the Annotated XML Specification, REC-xml-19980210,
http://www.xml.com/axml/testaxml.htm
[14] Router Solutions Inc., XML Strategy for CAE/CAD/CAM Integration, Press Release, can be
accessed at http://www.rsi-inc.com/Company/Archive/xmlpress.html
[15] Unigraphics Solutions, Unigraphics Goes Interoperable, Press release, can be accessed at
http://www.ugs.com/publications/articles/automfg_10/
[16] Unigraphics Solutions, Unigraphics Solutions Introduces Revolutionary Interoperability
Standard for c-Commerce, Press release, can be accessed at
http://www.hoops3d.com/about/press/00_07_18parasolidext.htm

http://pdesinc.aticorp.org/whatsnew/recprac209v1a.pdf
http://www.xml.com/axml/testaxml.htm

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 25

[17] Autodesk, Autodesk Unveils Cross-Platform, Cross-Industry Open XML Strategy for Design Data
and E-Commerce, Press release, can be accessed at, http://www3.autodesk.com/adsk/item/0,,279672-
123112,00.html
[18] Bentley, Bluestone and Bentley to bring xml-driven applications to the $3.6 trillion a/e/c
marketplace, Press release, can be accessed at http://www.bentley.com/news/00q1/bluestone.htm
[19] R. Williams, XSIL: Java/XML for Scientific Data, White Paper, June 27,200, Can be accesses at
http://www.cacr.caltech.edu/projects/xsil/xsil_spec.pdf
[20] Web 3D Consortium, X3D specification, Can be accessed at http://www.web3d.org/x3d/
[21] R. Carey and G. Bell, The Annotated VRML 2.0 Reference, Addison-Wesley Pub Co., 1997
[22] E. F. Begley, C.P. Sturrock, “MatML: XML for Material Property Data”, ASM International's
Advanced Materials & Processes (AM&P), November 2000, can be accessed at
http://www.ceramics.nist.gov/matml/matml.htm
[23] ASCX12, What is EDI?, http://www.x12.org/x12org/about/
[24] Accredited Standards Committee X12 (ASCX12), http://www.x12.org/
[25] United Nations Directories for Electronic Data Interchange for Administration, Commerce and
Transport http://www.unece.org/trade/untdid/
[26] ISO 8879:1986, Information processing -- Text and office systems -- Standard Generalized Markup
Language (SGML)
[27] Coombs, James H.; Renear, Allen H.; DeRose, Steven J. "Markup Systems and the Future of
Scholarly Text Processing." Communications of the Association for Computing Machinery 30/11 (1987)
933-947.
[28] World Wiede Web Consortium (W3C) main web site at http://www.w3.org
[29] P. Chan, R. Lee, and D. Kramer , The Java Class Libraries, 2nd Edition,
Addison-Wesley Pub Co, March 1998
[30] Object Management Group (OMG) UML resources, http://www.omg.org/technology/uml
[31] L. E. Gumley, Practical IDL Programming, 1st edition (July 2001) Morgan Kaufmann Publishers
[32] JDOM effort is documented at the site http://www.jdom.org/
[33] Java Beans specification at http://java.sun.com/products/javabeans/docs/spec.html
[34] Xbeans specification at http://www.xbeans.org/
[35] P. Stern, F. Hemez, C. Farhat, RCFem: A Research Code for Finite Element Methodologies, User’s
Manual, Center of Aerospace Structures, University of Colorado, Boulder, September 1995.
[36] ANSYS, ANSYS Commands Reference, V 5.7 manual, can be accessed at
http://www1.ansys.com/customer/content/documentation/57/Hlp_C_CH1.html
[37] HKS Inc., ABAQUS/Standard User's Manual (3 volumes),
[38] M. Fowler, K. Scott. UML Distilled, Second Edition. Boston: Addison-Wesley, 2000.
[39] D.Carlson. Modeling XML Applications with UML: Practical E-Business Applications. Boston:
Addison-Wesley, 2001.
[40] NetBryx Technologies, EDITML XML editor, at http://www.editml.com.
[41] BizTalk.org can be accessed at http://www.biztalk.org
[42] ANSYS Inc., APDL Programmer’s Guide, Publ. No. 001261, February 2000
[43] ANSYS Inc., Guide to ANSYS User Programmable Features, Publ. No. 001263 , February 2000.
[44] D. Harkey ,R. Orfali, Client/Server Programming With Java and CORBA , John Wiley & Sons,
1997.
[45] DataJunction Corporation, XMLjunction , can be accessed at http://www.xmljunction.net/
[46] J. Wernecke, The Inventor Mentor : Programming Object-Oriented 3d Graphics With Open
Inventor, Release 2, Addison-Wesley Pub Co, (March 1994).

http://www.ceramics.nist.gov/matml/matml.htm
http://www.unece.org/trade/untdid/

ANSYS Users’ Group Conference, University of Maryland College Park MD, October 2 2001

CMS Group, Naval Research Laboratory Projects//femML/femMLPaper12 26

[47] Open Source Development Network, main site can be accessed at http://www.osdn.com/
[48] Open Source Development Network, Source Forge can be accessed at http://sourceforge.net/
[49] International Science and Technology Outreach Society (ISTOS) at http://www.istos.org.

http://sourceforge.net/

	Abstract
	1. Introduction
	1.1 General problems
	1.2 Recognition of the problem by the industry
	1.3 Attempts to solve the CAx data exchange problem
	1.4 Opportunities of Technology from the EDI and XML solutions from e-Business industry.

	2. XML Overview
	2.1 XML definition
	2.2 The components of XML family of technologies
	2.3 How is XML used?
	2.4 Key idea behind XML

	3. XML and WWW technology Integration for Mission Critical Applications
	3.1 The Java Opportunity
	3.2 DOM and SAX
	3.3 XML and Data Bases

	4. Current status of femML
	4.1 Historical note
	4.2 What is femML
	4.3 femML Objectives
	4.5 femML Document Type Definition (DTD)

	Station To Station Data Exchange via femML
	5.1 General case of S2S implementation
	5.2 ANSYS case of S2S implementation

	6. The future of femML
	6.1 Issues to be resolved
	6.2 Potential evolution of the femML DTD

	7. Proposed long term approach and concluding remarks
	7. References

		2002-04-17T10:20:39-0500
	John Michopoulos

		2002-04-17T10:27:15-0500
	John Michopoulos

